Relationships

Session 7

PMAP 8921: Data Visualization with R Andrew Young School of Policy Studies Summer 2025

Plan for today

The dangers of dual y-axes

Visualizing correlations

Visualizing regressions

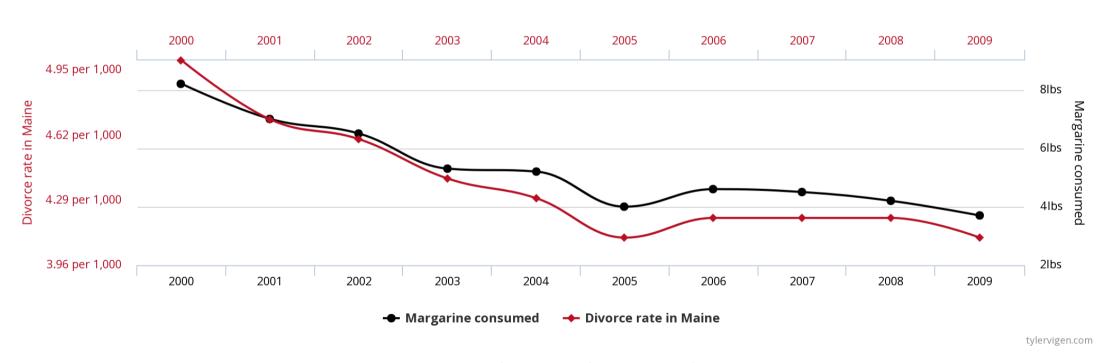
The dangers of dual y-axes

Stop eating margarine!

Divorce rate in Maine

correlates with

Per capita consumption of margarine



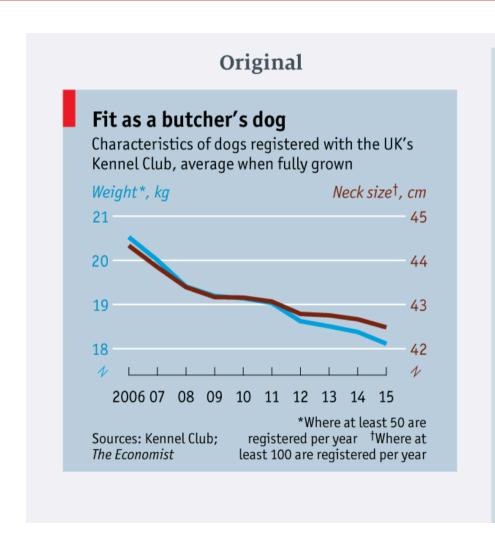
Source: Tyler Vigen's spurious correlations

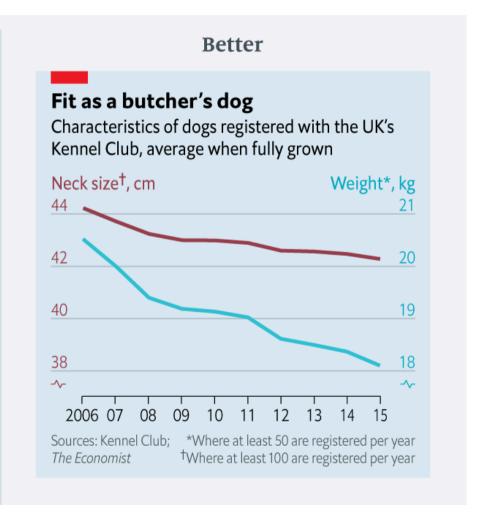
Why not use double y-axes?

You have to choose where the y-axes start and stop, which means...

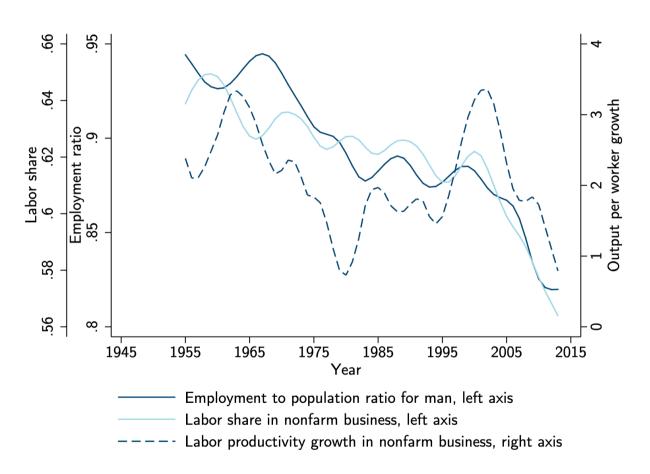
...you can force the two trends to line up however you want!

It even happens in The Economist!





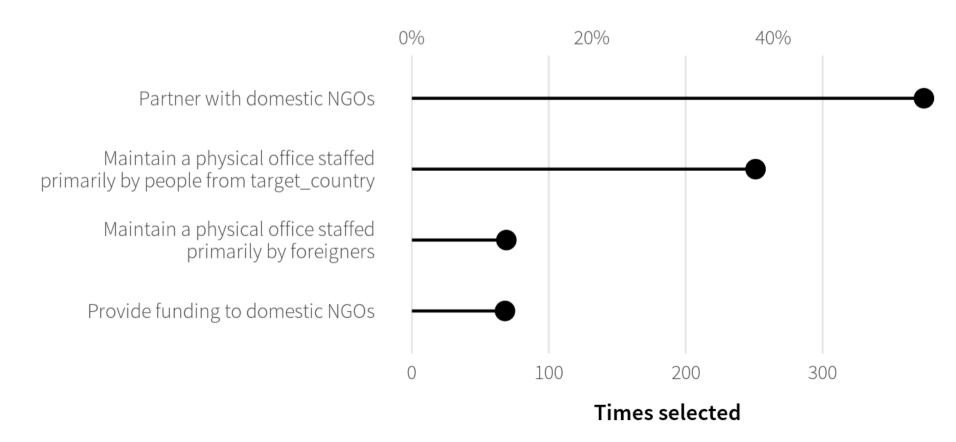
The rare triple y-axis!



Source: Daron Acemoglu and Pascual Restrepo, "The Race Between Man and Machine: Implications of Technology for Growth, Factor Shares and Employment"

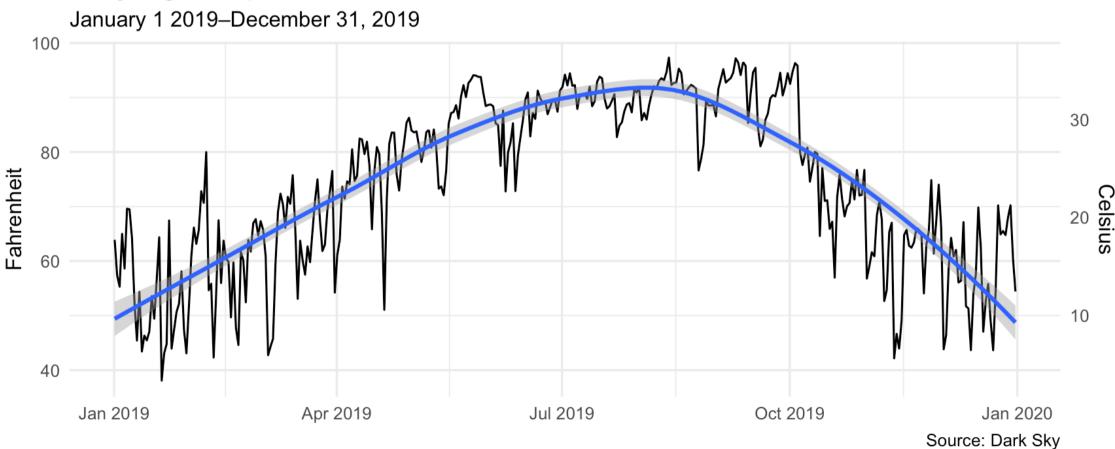
When is it legal?

When the two axes measure the same thing



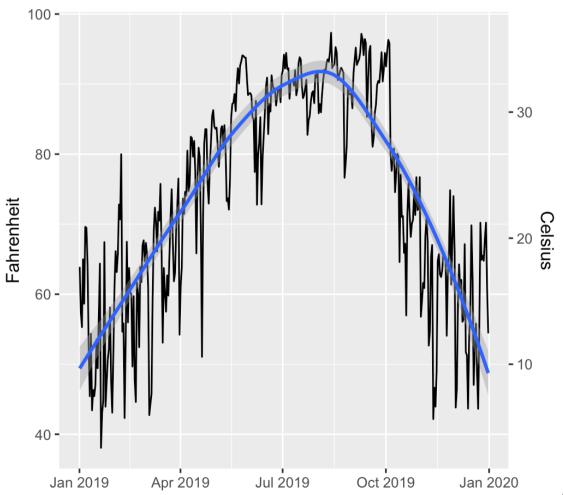
When is it legal?

Daily high temperatures in Atlanta



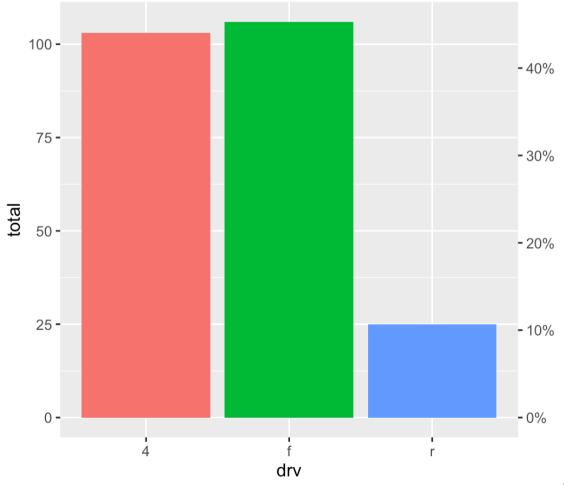
Adding a second scale in R

```
# From the uncertainty example
weather_atl <-
  read_csv("data/atl-weather-2019.csv")
ggplot(weather_atl,
       aes(x = time, y = temperatureHigh)) +
  geom_line() +
  geom_smooth() +
  scale_y_continuous(
    sec.axis =
      sec_axis(trans = ~(32 - .) * -5/9,
               name = "Celsius")
  labs(x = NULL, y = "Fahrenheit")
```



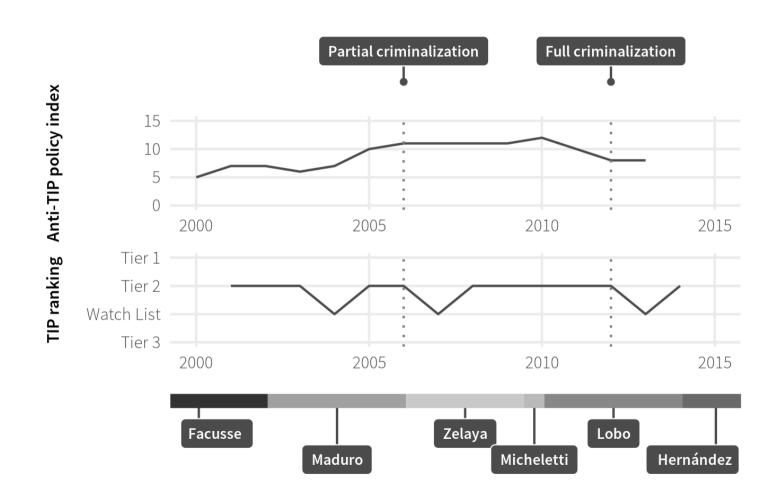
Adding a second scale in R

```
car_counts <- mpg |>
  group_by(drv) |>
  summarize(total = n())
total cars <- sum(car counts$total)</pre>
ggplot(car_counts,
       aes(x = drv, y = total,
           fill = drv)) +
  geom_col() +
  scale_y_continuous(
    sec.axis = sec axis(
      trans = ~ . / total_cars,
      labels = scales::label_percent())
  guides(fill = "none")
```



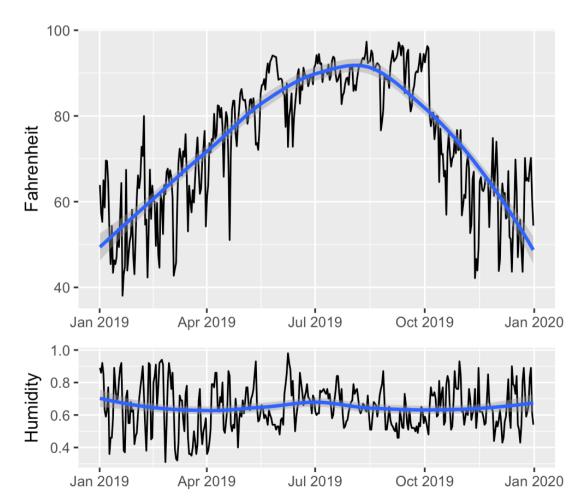
Alternative 1: Use another aesthetic

Alternative 2: Use multiple plots



Alternative 2: Use multiple plots

```
library(patchwork)
temp_plot <- ggplot(weather_atl,</pre>
                     aes(x = time,
                         y = temperatureHigh)
  geom_line() + geom_smooth() +
  labs(x = NULL, y = "Fahrenheit")
humid_plot <- ggplot(weather_atl,</pre>
                      aes(x = time,
                          y = humidity)) +
  geom_line() + geom_smooth() +
  labs(x = NULL, y = "Humidity")
temp_plot + humid_plot +
  plot_layout(ncol = 1,
              heights = c(0.7, 0.3))
```



Visualizing correlations

What is correlation?

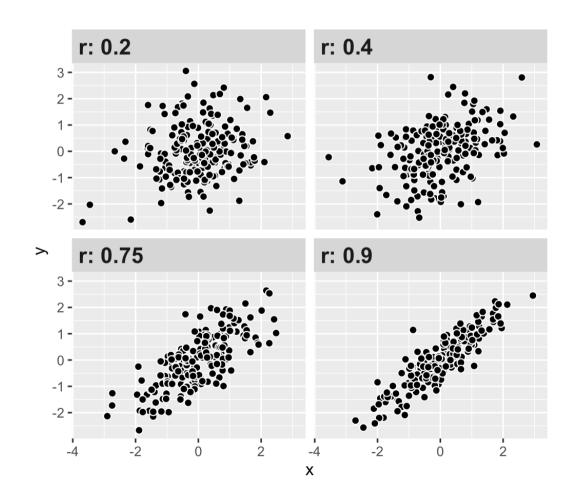
$$r_{x,y} = rac{ ext{cov}(x,y)}{\sigma_x \sigma_y}$$

As the value of X goes up, Y tends to go up (or down) a lot/a little/not at all

Says nothing about how much Y changes when X changes

Correlation values

r	Rough meaning
±0.1-0.3	Modest
±0.3-0.5	Moderate
±0.5-0.8	Strong
±0.8-0.9	Very strong

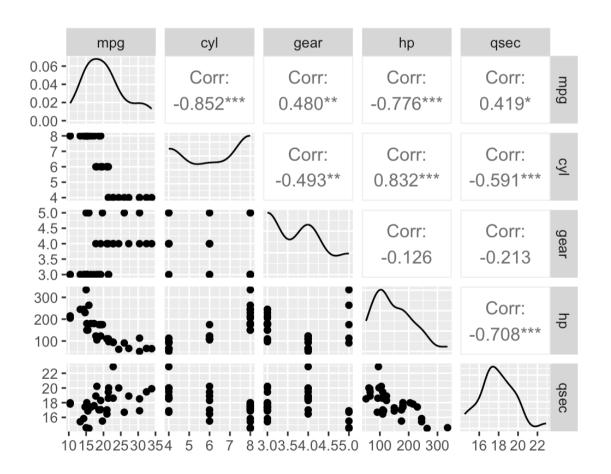


Scatterplot matrices

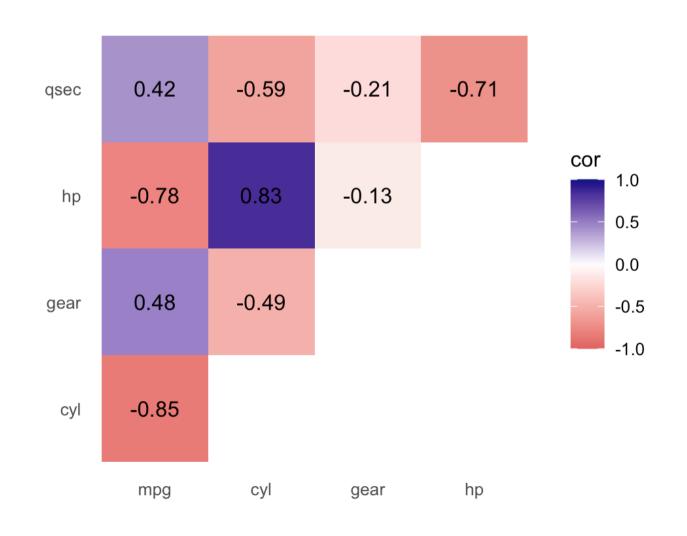
```
library(GGally)

cars_smaller <- mtcars |>
   select(mpg, cyl, gear, hp, qsec)

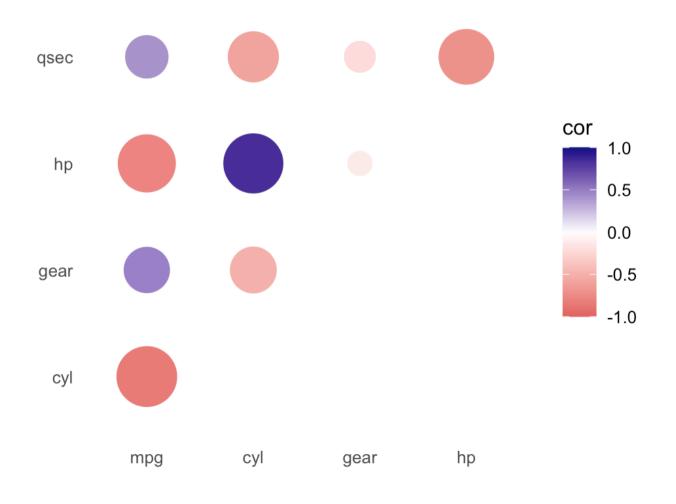
ggpairs(cars_smaller)
```



Correlograms: Heatmaps

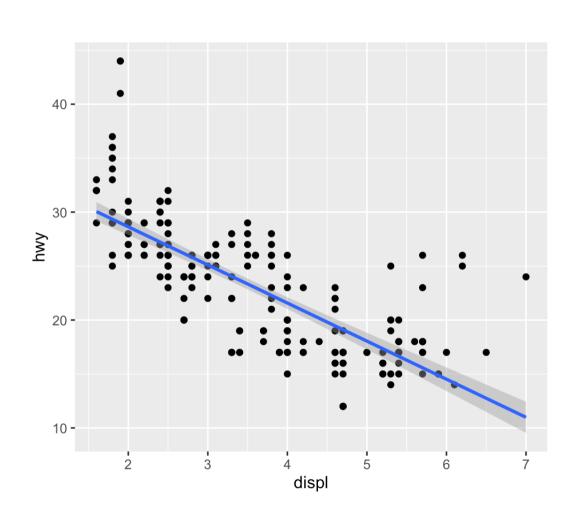


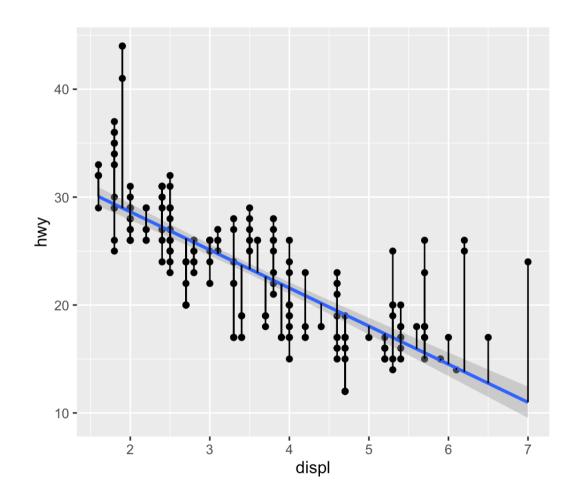
Correlograms: Points



Visualizing regressions

Drawing lines





Drawing lines with math

$$y = mx + b$$

y A number

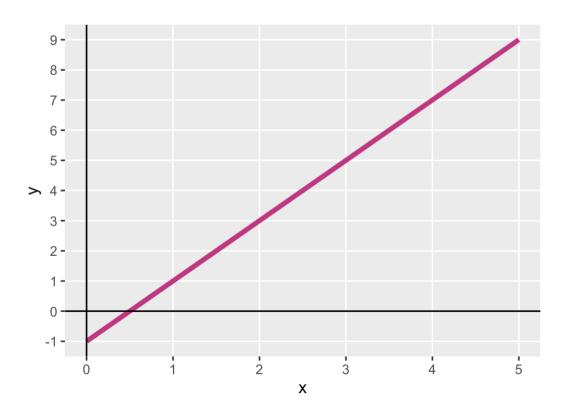
x A number

m Slope $(\frac{\text{rise}}{\text{run}})$

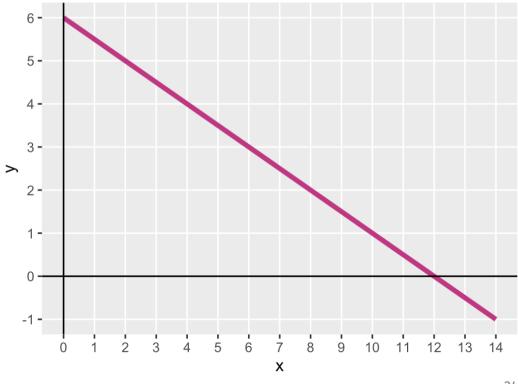
b y-intercept

Slopes and intercepts

$$y = 2x - 1$$



$$y = -0.5x + 6$$



Drawing lines with stats

$$\hat{y}=eta_0+eta_1x_1+arepsilon$$

\overline{y}	\hat{y}	Outcome variable (DV)
\boldsymbol{x}	x_1	Explanatory variable (IV)
m	eta_1	Slope
b	eta_0	y-intercept
	arepsilon	Error (residuals)

Building models in R

```
name_of_model <- lm(<Y> ~ <X>, data = <DATA>)
summary(name_of_model) # See model details
```

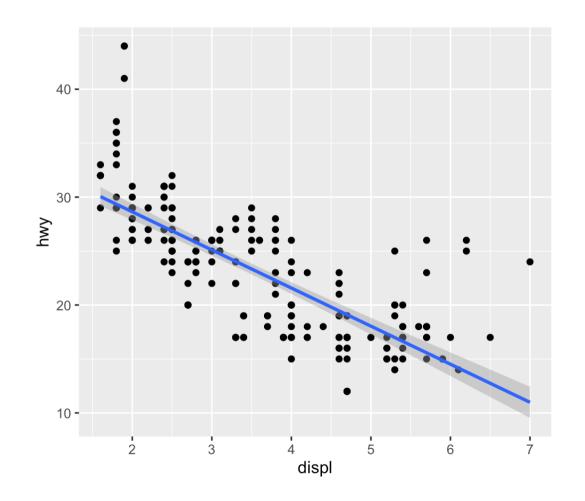
```
library(broom)

# Convert model results to a data frame for plotting
tidy(name_of_model)

# Convert model diagnostics to a data frame
glance(name_of_model)
```

Modeling displacement and MPG

$$\hat{\text{hwy}} = \beta_0 + \beta_1 \text{displ} + \varepsilon$$



Modeling displacement and MPG

.small-code[

```
tidy(car_model, conf.int = TRUE)
   [38;5;246m# A tibble: 2 \times 7 [39m]
##
                estimate std.error statistic p.value conf.low
##
     term
##
     [3m [38;5;246m<chr> [39m [23m
                                            [3m [38;5;246m<dbl> [3
                                             0.720 49.6 2.12
##
   [38;5;250m1 [39m (Intercept) 35.7
  [38;5;250m2 [39m displ
                                   - [31m3 [39m [31m. [39m [31m53 [3
##
```

28 / 53

Translating results to math

.pull-left[

##

##

[38;5;250m1 [39m (Intercept)

[38;5;250m2 [39m displ

35.7

- [31m3 [39m [31m. [39m [31m53 [3

 $\hat{\mathrm{hwy}} = 35.7 + (-3.53) imes \mathrm{displ} + arepsilon$

Template for single variables

A one unit increase in X is associated with a β_1 increase (or decrease) in Y, on average

$$\hat{\text{hwy}} = \beta_0 + \beta_1 \text{displ} + \varepsilon$$

$$\hat{\mathrm{hwy}} = 35.7 + (-3.53) imes \mathrm{displ} + arepsilon$$

This is easy to visualize! It's a line!

Multiple regression

We're not limited to just one explanatory variable!

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n + \varepsilon$$

$$\hat{hwy} = \beta_0 + \beta_1 displ + \beta_2 cyl + \beta_3 drv:f + \beta_4 drv:r + \varepsilon$$

Modeling lots of things and MPG

.small-code[

##

tidy(car_model_big, conf.int = TRUE)

[38;5;250m5 [39m drvr

```
[38;5;246m# A tibble: 5 \times 7 [39m]
##
             estimate std.error statistic p.value conf.low c
##
    term
##
  [3m [38;5;246m<chr> [39m [23m
                                          [3m [38;5;246m<dbl> [3
  [38;5;250m1 [39m (Intercept) 33.1 1.03 32.1 9.49
##
##
  [38;5;250m2 [39m displ
                                  - [31m1 [39m [31m. [39m [31m12 [3
                                  - [31m1 [39m [31m. [39m [31m45 [3
  [38;5;250m3 [39m cyl
##
## [38;5;250m4 [39m drvf
                                   5.04
                                          0.513
                                                      9.83 3.07
```

4.89

0.712

 $6.86 \, 6^{2/52}$

Sliders and switches

Sliders and switches

Template for continuous variables

Holding everything else constant, a one unit increase in X is associated with a β_n increase (or decrease) in Y, on average

$$\hat{\text{hwy}} = 33.1 + (-1.12) \times \text{displ} + (-1.45) \times \text{cyl} + (5.04) \times \text{drv:f} + (4.89) \times \text{drv:r} + \varepsilon$$

On average, a one unit increase in cylinders is associated with 1.45 lower highway MPG, holding everything else constant

Template for categorical variables

Holding everything else constant, Y is β_n units larger (or smaller) in X_n , compared to $X_{omitted}$, on average

$$\hat{\text{hwy}} = 33.1 + (-1.12) \times \text{displ} + (-1.45) \times \text{cyl} + (5.04) \times \text{drv:f} + (4.89) \times \text{drv:r} + \varepsilon$$

On average, front-wheel drive cars have 5.04 higher highway MPG than 4-wheel-drive cars, holding everything else constant

Good luck visualizng all this!

You can't just draw a line!
There are too many moving parts!

Main problems

Each coefficient has its own estimate and standard errors

Solution: Plot the coefficients and their errors with a coefficient plot

The results change as you move each slider up and down and flip each switch on and off

Solution: Plot the marginal effects for the coefficients you're interested in

Coefficient plots

Convert the model results to a data frame with tidy()

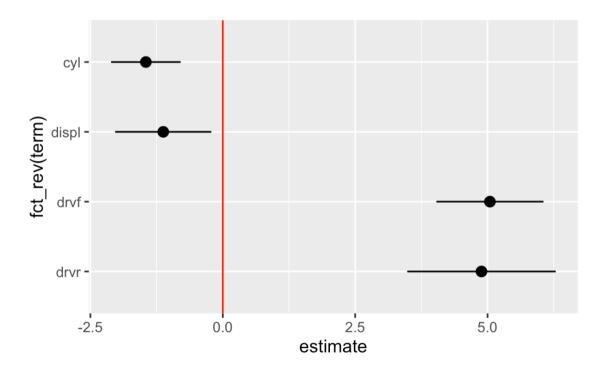
```
car_model_big <- lm(hwy ~ displ + cyl + drv, data = mpg)

car_coefs <- tidy(car_model_big, conf.int = TRUE) |>
  filter(term != "(Intercept)") # We can typically skip plott
car_coefs
```

```
## [38;5;246m# A tibble: 4 × 7 [39m
## term estimate std.error statistic p.value conf.low conf.hi
## [3m [38;5;246m<chr> [39m [23m [38;5;246m<dbl> [39m [23m]]23m
```

Coefficient plots

Plot the estimate and confidence intervals with geom_pointrange()



Remember that we interpret individual coefficients while holding the others constant

We move one slider while leaving all the other sliders and switches alone

Same principle applies to visualizing the effect

Plug a bunch of values into the model and find the predicted outcome

Plot the values and predicted outcome

Create a data frame of values you want to manipulate and values you want to hold constant

Must include all the explanatory variables in the model

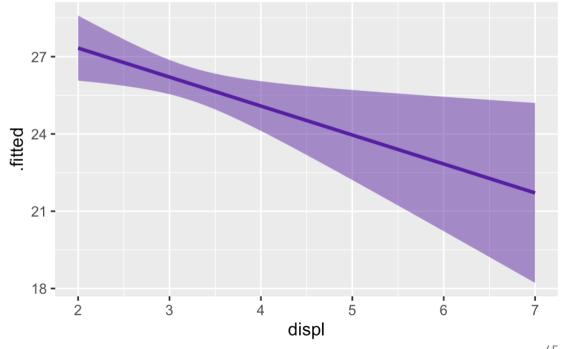
```
## [38;5;246m# A tibble: 6 × 3 [39m
## displ cyl drv
## [3m [38;5;246m<dbl> [39m [23m [3m [38;5;246m<dbl> [39m [23m [
## [38;5;250m1 [39m 2 5.89 f
## [38:5:250m2 [39m 2 1 5.89 f
```

Plug each of those rows of data into the model with augment()

```
## [38;5;246m# A tibble: 6 × 5 [39m
## displ cyl drv .fitted .se.fit
## [3m [38;5;246m<dbl> [39m [23m [3m [38;5;246m<dbl> [39m [23m [
## [38:5:250m1 [39m 2 5.89 f 27.3 0.644
```

Plot the fitted values for each row

Cylinders held at their mean; assumes front-wheel drive



We can also move multiple sliders and switches at the same time!

What's the marginal effect of increasing displacement across the front-, rear-, and four-wheel drive cars?

Create a new dataset with varying displacement and varying drive, holding cylinders at its mean

The expand_grid() function does this

.small-code[

 $\lceil 29 \cdot 5 \cdot 250m2 \rceil \lceil 20m \rceil$

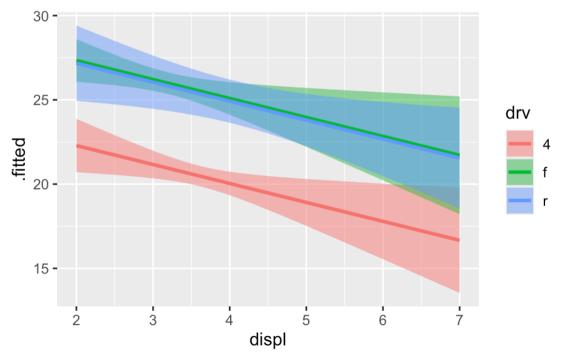
```
cars_new_data_fancy <- expand_grid(displ = seq(2, 7, by = 0.1)
                                   cyl = mean(mpg$cyl),
                                   drv = c("f", "r", "4"))
head(cars_new_data_fancy)
  [38;5;246m# A tibble: 6 × 3 [39m
##
## displ cyl drv
  [3m [38;5;246m<dbl> [39m [23m [3m [38;5;246m<dbl> [39m [23m [
##
  [38;5;250m1 [39m 2 5.89 f
##
```

Plug each of those rows of data into the model with augment()

```
## [38;5;246m# A tibble: 6 × 5 [39m
## displ cyl drv .fitted .se.fit
## [3m [38;5;246m<dbl> [39m [23m [3m [38;5;246m<dbl> [39m [23m [
## [38:5:250m1 [39m 2 5.89 f 27.3 0.644
```

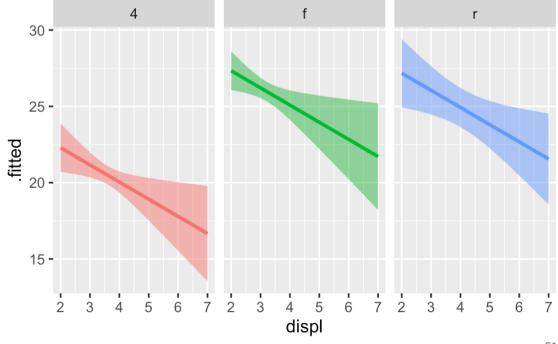
Plot the fitted values for each row

Cylinders held at their mean; colored/filled by drive



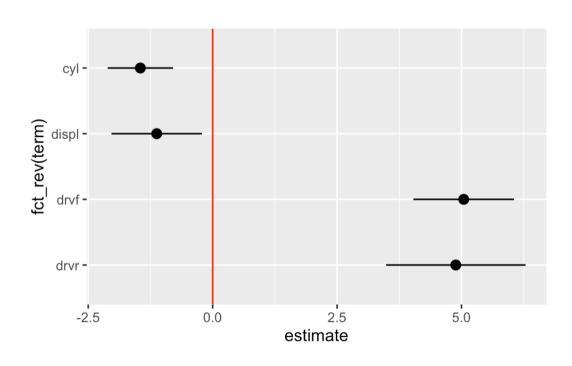
Plot the fitted values for each row

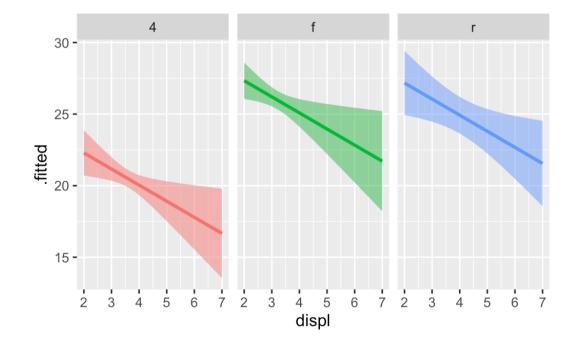
Cylinders held at their mean; colored/filled/facetted by drive



Not just OLS!

These plots are for an OLS model built with lm()





Any type of statistical model

The same techniques work for pretty much any model R can run

Logistic, probit, and multinomial regression (ordered and unordered)

Multilevel (i.e. mixed and random effects) regression

Bayesian models

(These are extra pretty with the {tidybayes} package)

Machine learning models

If it has coefficients and/or if it makes predictions, you can (and should) visualize it!